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1 Introduction

1.1 Problem

Nowadays, many computer architectures have added support for multimedia extensions

in the form of SIMD instructions. SIMD instructions allow the same operation to be performed

on multiple pieces of data simultaneously, thus exploiting the inherent parallelism present in the

application. Compilers employ various auto-vectorization strategies to recognize this parallelism

and utilize the SIMD instructions. However, many of these strategies are very limited in their

scope and sometimes require explicit indication by the user of what to parallelize through the use

of library functions or annotated pragmas. As a result, the user often holds the burden of writing

and formatting their code in such a way that the compiler can easily determine the inherent

parallelism.

1.2 Approach

Superword level parallelism (SLP) is one approach to expanding the compiler’s

auto-vectorization scope. SLP packs independent but similar data and operations into

“superwords” that can then be executed using SIMD instructions. It does not require any explicit

hints from the user, and it can recognize the dependency between SIMD operations through

following def-use chains.
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1.3 Related Work

SLP was first introduced by [1] where an auto-vectorization algorithm was made to

identify isomorphic (meaning they perform the same operation i.e. add, subtract, etc.) statements

and merge them together into packs. These packs corresponded to vectors of data that could be

directly lowered into SIMD instructions. The algorithm begins by identifying adjacent array

accesses as the basis for these packs and then extends these packs by following their use-def and

def-use chains. [1] tested out the SLP algorithm on various tests from the SPEC95fp benchmark

suite, and found speedups ranging from 1.24 to 6.70.

SLP was further optimized in [2] where the authors came up with a modified algorithm

that reduced the overhead with packing/unpacking. If the operands in superwords are already in

arrays, there is little overhead required to load portions of an array into vector registers. If

however, these operands are in other scalar registers, are constants, or are in other parts of

memory, significant effort needs to be spent to load each of these operands into a vector register,

and then store them back into the original locations. [2] specifically addresses this issue by

extending the scope of the SLP algorithm to look at an entire basic block. By considering a more

global view that spans the whole basic block, the algorithm proposed in [2] can determine what

operands will have to be packed/unpacked, and thus optimize the data layout of these operands in

memory so as to reduce individual loads/stores.

Currently, SLP vectorization has been widely used in modern compilers, e.g., LLVM [3],

which will automatically exploit potential instruction-level parallelism in the program and pack

operations into SIMD instructions.
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1.4 Contributions

In our project, we drew inspiration from [1], one of the first works on an SLP compiler

optimization, and implemented a similar SLP pass in LLVM. Our pass works by first focusing on

array accesses, and then following the def-use chains to construct the superwords. We then

replace these superwords with vectorized packs of operations that utilize the LLVM vector IR

type. During code-generation, the LLVM vector IR type is automatically lowered into SIMD

instructions.

With our SLP pass, we saw performance improvements across a variety of benchmarks

from simple linear algebra routines to more complicated programs like matrix multiplication. We

compiled these benchmarks using the ARMv8-A ISA with the NEON SIMD extension, and then

ran the executables through the gem5 simulator to gather performance statistics.

2 Algorithm

2.1 Overview

Our implementation of SLP in LLVM borrows heavily from the algorithm discussed in

[1]. We begin by first performing loop unrolling to open up the opportunity for adjacent memory

accesses to existing within a single basic block. These adjacent memory accesses form the basis

for a “pack”, where a “pack” is a collection of independent, isomorphic statements. From this

initial pack, we follow the use-def and def-use chains to form a chain of packs known as a

“packset”. Once the packset can no longer be extended, it is then scheduled to respect data

dependencies and is finally lowered into vectorized LLVM IR that eventually emits SIMD

instructions.
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2.2 SLP Identification

SLP_extract: BasicBlock B → BasicBlock
PackSet P ← EmptySet
P ←   find_adj_refs(B, P)
P ← extend_packlist(B, P)
P ← combine_packs(P)
return schedule(B, [], P)

Figure 1. Algorithm to identify SLP.

Figure 2. Example of identifying SLP packs.

The overall algorithm to perform SLP identification is shown in Figure 1, while the

details can be found in [1]. We will also use an example (Figure 2) from [1] to explain the

process to identify potential SLP packs. In Figure 2, the algorithm would first invoke

find_adj_refs function and identify the consecutive array references to array z. Two adjacent

memory reference instructions will be packed into a pair. In extend_packlist, following the

def-use chain, it would then recognize the independent, isomorphic multiplication operations of

c * z[i+0] & f * z[i+1], f * z[i+1] & t * z[i+2], and t * z[i+2] & y *

z[i+3], which would form more pairs. We keep iterating along the def-use chain to find more

dependent instructions until there is no change. Next, in combine_packs, isomorphic pairs
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would then be combined together into a pack, e.g., the aforementioned pairs will be combined

into a pack (c * z[i+0], f * z[i+1], t * z[i+2], y * z[i+3]), and packs will be

packed in a pack set. Finally, the algorithm would then apply the list scheduling algorithm to find

a correct sequence of packs according to the data dependencies between packs.

2.3 Code Generation

Once the packs have been identified and scheduled, they can then be lowered to SIMD

instructions, consisting of 2 phases: (1) User Code to LLVM IR, (2) LLVM IR to ARMv8-A.

2.3.1 Phase (1): User Code to LLVM IR

In Phase (1), packs are converted to LLVM vectors that are either a) explicitly

packed/unpacked if they need to gather/scatter their operands or are b) implicitly

packed/unpacked through bitcasts if their operands are adjacent array references.

Figure 3 shows the lowering from user code to LLVM IR. We can see the explicit

packing of operands a, b, c, d into a vector <a, b, c, d>, and then the explicit unpacking of

<e, f, g, h> into operands e, f, g, h. We can also see the implicit packing of operands A[i],

A[i+1], A[i+2], A[i+3] into vector A[i:i+3] through a bitcast.

Figure 4 shows another example of the lowering from user code to LLVM IR. Here, all

operands are found in adjacent array references, so no explicit packing/unpacking is needed.

Array pointers to A and B are simply bitcast into vectors, the addition operation is performed,

and then the result is stored in C.
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Figure 3. Example 1 of lowering from user code to LLVM IR.

Figure 4. Example 2 of lowering from user code to LLVM IR.
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2.3.2 Phase (2): LLVM IR to ARMv8-A

As we target the ARMv8-A backend, the LLVM IR vectors are lowered into NEON

syntax SIMD instructions.

Figure 5 shows the emitted assembly code for the LLVM IR code shown in Figure 3. To

perform the vector multiplication, A[i:i+3] is loaded into the q1 SIMD register, and operands

a, b, c, d are packed into the v0 SIMD register. The vector multiplication is then performed

(mul v0.4s, v1.4s, v0.4s), and the result is then unpacked into scalar registers s2, s3,

s4, s5 representing e, f, g, h, respectively.

Figure 6 shows the emitted assembly code for the LLVM IR code shown in Figure 4.

First A[i+1:i+4] and B[i+2:i+5] are loaded into q0 and q1 SIMD registers, respectively.

The vector addition is then performed (add v0.4s, v1.4s, v0.4s), and the resulting vector

is stored directly into the C[i:i+3] array.

3 Experimental Setup

3.1 Environment

We develop and test our SLP algorithms in LLVM version 10.0.0 in Ubuntu 20.04.3. We

compile the benchmark programs with clang to generate LLVM IR and perform SLP on IR.

After that, llc and aarch64-linux-gnu-gcc will be invoked to emit machine code and executables,

targeting aarch64 platform with gcc toolchain version 9.4.0. The programs are executed in Gem5

simulator (commit: 141cc37c2d4b93959d4c249b8f7e6a8b2ef75338), with CPU type

O3_ARM_v7a_3, default L1 and L2 cache, to acquire the runtime performance data.
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Figure 5. Emitted assembly code from IR in Figure 3.

Figure 6. Emitted assembly code from IR in Figure 4.
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3.2 Benchmark Programs

We measure the effectiveness of SLP algorithms on 5 benchmark programs:

1. memcpy: Simple data movement in memory.

2. axpy: Calculate a * X + Y, where a is a scalar, X and Y are vectors.

3. dotprod: Calculate the dot product of two vectors.

4. mmm: Matrix multiplication.

5. arithmetic: More complicated floating-point arithmetic operations.

We obtain the experimental results in terms of runtime and code size with 4 compilation

setups: O1, O1 + unroll, O1 + unroll + SLP, and O2. Runtime data is obtained by the clock()

system call and refers to the execution time of the computation kernel function without data

initialization and correctness checking. Code size refers to the instruction counts of only the

computation kernel function, as ARM is a RISC ISA and all instructions are encoded in 4 bytes.

In some programs (mmm and memcpy), auto loop unrolling will lead to unexpected results, and

we need to unroll the loop (e.g., unroll only the inner loop in mmm) manually by inserting clang

pragma.

4 Experimental Evaluation

We measure the performance and code size of the 4 compilation setups. Table 1 and

Figure 7 show the runtime of the computation kernel function in the 5 benchmark programs. The

results match our expectation that by exploiting SLP vectorization in the program, it will utilize

the SIMD computing units in the CPU and accelerate the computation, compared with simple O1

and O1 with loop unrolling. After SLP vectorization, the programs run 1.31x faster than O1 and

1.17x faster than O1 with loop unrolling in geometric mean. As O2 will perform more aggressive
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optimizations besides vectorization, only performing SLP vectorization results in a relatively

lower performance than O2.

O1 O1+unroll O1+unroll+SLP O2

memcpy 14833 14031 13768 7085

axpy 5011 4056 2628 1995

dotprod 5675 4443 3582 2969

mmm 40158 37575 37212 33945

arithmetic 20073 19752 17934 10102

Table 1. Execution time of 5 benchmark programs in microseconds.

Figure 7. Execution time in different compilation setups, O1 is 1x.

Table 2 and Figure 8 show the code size of the computation kernel function in the 5

benchmark programs. While both direct loop unrolling and SLP vectorization aim to utilize the

instruction-level parallelism of loops, SLP vectorized programs usually have a lower code size as
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it reduces instruction counts by packing isomorphic operations into vectorization instructions. In

our experiment results, SLP results in lower instruction counts in 4 of the 5 short programs, even

though it requires further variable packing or unpacking. The code size of the arithmetic program

after SLP is the largest mainly because there is frequent register spilling and reloading, and a lot

of load instructions are added. In summary, SLP vectorization leads to a 94% increase in code

size compared to O1 and a 4% decrease in code size compared to O1 with direct loop unrolling.

O1 O1+unroll O1+unroll+SLP O2

memcpy 20 64 59 71

axpy 25 43 43 90

dotprod 42 70 59 90

mmm 82 110 108 123

arithmetic 50 131 146 50

Table 2. Instruction counts of computation kernels in 5 benchmark programs.

Figure 8. Instruction counts of computation kernels in different compilation setups, O1 is 1x.
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5 Conclusions, Lessons Learned & Future Work

In this project, we implement the SLP algorithms from [1] in LLVM compiler

infrastructure and measure the effectiveness on multiple benchmark programs. In particular, our

algorithms are able to automatically identify superword level parallelism within a basic block

and pack isomorphic and independent operations into SIMD instructions to improve the

performance. Our experiment results show that basic SLP algorithms will improve the runtime

performance by 1.31 times compared to O1 and 1.17 times compared to O1 with loop unrolling

with a smaller program size compared with direct loop unrolling.

During the project, we learned the basic techniques to exploit instruction level parallelism

in the programs and the effectiveness and necessity of utilizing SIMD units in modern

processors. We also got more familiar with the development workflow on a modern compiler,

including using the APIs and optimizing programs on intermediate representations.

Due to time limitations, our algorithms are able to run on simple vectors and matrices

without complicated transformations on array indices. The algorithms can be further improved

by handling more complex cases, introducing a cost model to evaluate the improvement of SLP

vectorization and explore the design space, etc.
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